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Abstract: The overall response rate to fluoropyrimidine monotherapy in colorectal cancer (CRC) is
limited. Transcriptomic datasets of CRC patients treated with 5-fluorouracil (5FU) could assist in the
identification of clinically useful biomarkers. In this research, we aimed to analyze transcriptomic
cohorts of 5FU-treated cell lines to uncover new predictive biomarker candidates and to validate
the strongest hits in 5FU-treated human colorectal cancer samples with available clinical response
data. We utilized an in vitro dataset of cancer cell lines treated with 5FU and used the reported
area under the dose–response curve values to determine the therapeutic response to 5FU treatment.
Mann–Whitney and ROC analyses were performed to identify significant genes. The strongest genes
were combined into a single signature using a random forest classifier. The compound 5-fluorouracil
was tested in 592 cell lines (294 nonresponders and 298 responders). The validation cohort consisted
of 157 patient samples with 5FU monotherapy from three datasets. The three strongest associations
with treatment outcome were observed in SHISA4 (AUC = 0.745, p-value = 5.5 × 10−25), SLC38A6
(AUC = 0.725, p-value = 3.1 × 10−21), and LAPTM4A (AUC = 0.723, p-value = 6.4 × 10−21). A
random forest model utilizing the top genes reached an AUC value of 0.74 for predicting therapeutic
sensitivity. The model correctly identified 83% of the nonresponder and 73% of the responder
patients. The cell line cohort is available and the entire human colorectal cohort have been added
to the ROCPlot analysis platform. Here, by using in vitro and in vivo data, we present a framework
enabling the ranking of future biomarker candidates of 5FU resistance. A future option is to conduct
an independent validation of the established predictors of resistance.

Keywords: pharmacology; proliferation; receiver operator characteristics; RNAseq; gene expression

1. Introduction

Globally, colorectal cancer (CRC) accounts for 10% (1.9 million) of the overall can-
cer incidence and 9.4% (935,000) of deaths caused by cancer. In 2020, it placed third in
incidence and second in mortality among all cancer types [1]. In terms of pathogenesis,
approximately 70% of the diagnosed cases are sporadic, 25% are familial, and the remaining
5% are inherited [2]. The primary treatment option is surgery, but in advanced stages,
systemic chemotherapy is the standard treatment. The adjuvant therapy for resected CRC
patients without metastases includes capecitabine, oxaliplatin, 5-fluorouracil (5FU), and
leucovorin [3]. Treatment for metastatic patients is based on 5FU, oxaliplatin, and irinote-
can, and, depending on the genetic profile, may also involve biological therapies such as
those targeting the VEGF or EGFR pathways [4].

Predictive biomarkers can be used to predict the outcome of a therapeutic intervention
and can provide information on the expected success rate of a particular therapy, the exis-
tence of therapeutic resistance, or the development of a serious adverse reaction. Although
biomarkers can contribute to personalized treatment with improved outcomes, the number
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of predictive biomarkers in colorectal cancer is still limited. One of the few biomarkers that
influence therapeutic decision-making is microsatellite instability (MSI). The 5FU monother-
apy treatment is not effective in patients with high MSI, but oxaliplatin-based treatment
can offer a therapeutic benefit. Another biomarker affecting therapeutic decisions is the
presence of KRAS/NRAS mutations, which decrease the efficacy of EGFR therapies [5].
An important predictive biomarker for avoiding serious adverse reactions to 5FU-based
treatment is the test for dihydropyrimidine dehydrogenase (DPD) deficiency in patients [6].

Both 5FU and capecitabine are fluoropyrimidines, which are members of the class of
agents known as antimetabolites. As their chemical structure shares a number of common
traits with the substrate of enzymes essential for DNA synthesis, antimetabolites can
disrupt the DNA structure and ultimately lead to tumor cell death. Besides colorectal cancer,
fluoropyrimidines are also used to treat breast, head and neck, ovarian, and gastrointestinal
tumors, as well as basal cell carcinomas. The anti-tumor effects of fluoropyrimidine analogs
are complex and involve three different mechanisms of action: (a) the 5FU metabolite
fluorodeoxyuridine monophosphate (FdUMP) inhibits thymidylate synthase, which is
essential for thymidine synthesis, (b) fluorouridine triphosphate (FUTP) is incorporated
into RNA, and (c) fluorodeoxyuridine triphosphate (FdUTP) is incorporated into DNA
resulting in DNA strand breaks [7].

The overall response rate to fluoropyrimidine monotherapy in colorectal cancer is
limited and is in the range of 10% to 15% [8]. A higher response rate of up to 45–50% can
be achieved with additional oxaliplatin or irinotecan treatment; however, in these cases,
toxicity will also increase [9]. The incidence of CRC is rising and 5FU is considered a key
drug; therefore, there is an urgent need to be able to identify patients who may benefit from
5FU-based therapies. Transcriptomic datasets profiling tumors of CRC patients treated
with 5FU could provide help with making a significant advancement in this area.

In this study, we aimed to analyze transcriptomic cohorts of 5FU-treated cell lines to
uncover new predictive biomarker candidates and validate the strongest hits in 5FU-treated
colorectal human samples with clinical information and response data. Our overall goal
was not only to identify single genes that could serve as biomarkers in patients treated with
fluoropyrimidine but also to combine the top candidates into a single predictive tool by
employing machine learning.

2. Results
2.1. Features Significant in the In Vitro Dataset

The compound 5-fluorouracil was tested in 907 cell lines, with a minimum screening
concentration of 0.125 µM and a maximum concentration of 32 µM. Based on the reported
AUDRC values, 294 were categorized as nonresponders (AUDRC range: 0.931–0.991), 298
as responders (AUDRC range: 0.099–0.801), and 315 (AUDRC between 0.931 and 0.801)
were excluded from the analysis. The most sensitive solid tumor cell lines were found to
be PSN1 (pancreas cancer), CAL148 (breast cancer), and JHU011 (head and neck cancer),
whereas the most resistant cell lines were LN18 (glioblastoma), HEC1 (uterus cancer), and
ASH3 (cervix cancer) (Table 1).

All available genes (n = 15,791) were tested by the Mann–Whitney U test and ROC
analysis, and we found statistically significant differences between nonresponders and
responders in 2484 genes. The strongest associations with treatment outcome were observed
in SHISA4 (shisa family member 4 gene, n = 592, ROC AUC: 0.745, Mann–Whitney U test
p-value: 5.5 × 10−25), SLC38A6 (solute carrier family 38 member 6 gene, ROC AUC = 0.725,
p-value = 3.1 × 10−21), and LAPTM4A (lysosomal protein transmembrane 4 alpha gene,
ROC AUC = 0.721, p-value = 1.2 × 10−20). The top ten most significant genes are presented
in Table 2, and the complete list of all genes is provided in Supplemental Table S1.
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Table 1. The top ten 5-fluorouracil sensitive (A) and resistant (B) solid tumor cell lines in the GDSC
database. A lower AUDRC (area under the dose–response curve) value indicates higher sensitivity,
while a higher AUDRC value indicates greater resistance.

(A)

Cell Line CCLE Name Tumor Type Normalized AUDRC

PSN1_PANCREAS pancreas exocrine adenocarcinoma 0.352
CAL148_BREAST breast ductal carcinoma 0.353

JHU011_UPPER_AERODIGESTIVE_TRACT upper aerodigestive squamous carcinoma 0.39
PCI4B_UPPER_AERODIGESTIVE_TRACT upper aerodigestive squamous carcinoma 0.423
CAL27_UPPER_AERODIGESTIVE_TRACT upper aerodigestive squamous carcinoma 0.439

PA1_OVARY ovary mixed germ cell 0.452
MRKNU1_BREAST breast carcinoma 0.46
22RV1_PROSTATE prostate adenocarcinoma 0.483

HUPT4_PANCREAS pancreas exocrine adenocarcinoma 0.488
A2780_OVARY ovary endometrioid adenocarcinoma 0.496

(B)

Cell Line CCLE Name Tumor Type Normalized AUDRC

LN18_CENTRAL_NERVOUS_SYSTEM glioblastoma 0.991
HEC1_ENDOMETRIUM uterus endometrial adenocarcinoma 0.99

ASH3_THYROID thyroid carcinoma 0.988
SCH_STOMACH choriocarcinoma 0.988

CCFSTTG1_CENTRAL_NERVOUS_SYSTEM astrocytoma 0.988
NCIH2444_LUNG non-small cell lung cancer 0.988

HSC2_UPPER_AERODIGESTIVE_TRACT upper aerodigestive squamous carcinoma 0.988
NCIH524_LUNG small cell lung cancer 0.988

SW13_ADRENAL_CORTEX adrenal cortex 0.987
FTC133_THYROID thyroid carcinoma 0.987

Table 2. The top ten genes associated with response in the fluoropyrimidines treated samples of the
in vitro database.

Gene Symbol Approved Name ROC AUC

Mean
Expression

(Nonrespon-
der)

Mean
Expression

(Responder)

Mean Fold
Change

Mann–
Whitney U

Test p-Value

SHISA4 shisa family member 4 0.745 1096.7 714.4 1.54 5.52 × 10−25

SLC38A6 solute carrier family 38 member 6 0.725 1072.0 735.3 1.46 3.07 × 10−21

PRPF38B pre-mRNA processing factor 38B 0.723 753.0 1056.3 0.71 6.39 × 10−21

LAPTM4A lysosomal protein transmembrane
4 alpha 0.721 1027.9 712.3 1.44 1.23 × 10−20

MT2A metallothionein 2A 0.720 1038.1 699.6 1.48 2.34 × 10−20

FAM114A1 family with sequence similarity
114 member A1 0.719 1058.4 687.9 1.54 2.73 × 10−20

FAM127A retrotransposon Gag-like 8C 0.718 1031.1 678.9 1.52 4.75 × 10−20

SLC35F5 solute carrier family 35 member F5 0.715 1091.4 732.7 1.49 1.17 × 10−19

TSPAN4 tetraspanin 4 0.715 1090.0 703.4 1.55 1.25 × 10−19

VAMP3 vesicle-associated membrane
protein 3 0.715 1051.6 719.4 1.46 1.44 × 10−19

2.2. Clinical Sample Database Construction

Our search criteria were met by a total of 805 CRC patients’ samples from 12 datasets
with available treatment information including response and raw gene expression data
(Figure 1B). The detailed characteristics of all screened datasets are presented in Table 3.
After normalization of the raw gene expression data and standardization between the
different measurement platforms (Figure 1C), mRNA expression for a total of 19,890 genes
was available. Out of 805 patients, we filtered those who had received multiple treatments:
180 patients had received bevacizumab, 221 had received irinotecan, and 438 oxaliplatin.
Note that some patients had received multiple combinations of these; thus, the number
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of samples remaining—of patients who had received monotherapies of either 5FU or
capecitabine—was reduced to 157. As our goal was to directly link the in vitro data (which
was based on 5FU monotherapy) and the clinical samples, we used only these 157 samples
as the validation cohort in the present study. However, the entire cohort is available for
further research at the www.rocplot.com/colorectal website.

Figure 1. Overview of the data processing steps. Summary of response classification using the area
under the dose–response curve (AUDRC) values in the 5FU-treated cell lines (A). Outline of the
clinical database setup (B) and the pipeline employed for transcriptomic data pre-processing (C).

www.rocplot.com/colorectal
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Table 3. Overview of datasets screened for the clinical database.

Dataset
(Reference) Platform Sample

Size
Age in Years,
(Mean ± SD)

5FU/
Capecitabine Irinotecan Bevacizumab Oxaliplatin

Of These:
5FU/

Capecitabine
Monother-

apy

GSE19860 Affymetrix HGU133
Plus 2.0 Array 29 - 29 - 12 29 -

GSE19862 Affymetrix HGU133
Plus 2.0 Array 14 - - - 14 - -

GSE28702
[10]

Affymetrix HGU133
Plus 2.0 Array 56 - 56 - - 56 -

GSE45404
[11]

Affymetrix HGU133
Plus 2.0 Array 42 59.9 ± 11.20 42 - - - 42

GSE49355
[12]

Affymetrix
HGU133A Array 20 59.3 ± 7.83 20 20 - - -

GSE52735
[13]

Affymetrix HGU133
Plus 2.0 Array 37 - 37 - - 37 -

GSE62080
[14]

Affymetrix HGU133
Plus 2.0 Array 21 - 21 21 - - -

GSE69657
[15]

Affymetrix HGU133
Plus 2.0 Array 16 53.6 ± 12.88 16 - - 16 -

GSE72970
[16]

Affymetrix HGU133
Plus 2.0 Array 124 61.7 ± 11.39 124 88 28 40 -

GSE104645
[17]

Agilent-014850
Whole Human

Genome Microarray
4x44K

167 - 140 54 83 113 -

GSE119409
[18]

Affymetrix HGU133
Plus 2.0 Array 56 56.8 ± 11.17 56 - - - 56

TCGA Illumina HiSeq 223 60.7 ± 12.04 210 38 43 147 59

Total 805 60.1 ± 11.69 751 221 180 438 157

2.3. Validation of Significant Genes in the Clinical Sample Database

Of a total of 2484 genes previously identified in the in vitro database, 742 genes reached
a statistically significant association in the clinical samples as well. The complete list of all
significant genes is presented in Supplemental Table S2. The radar chart of AUC values
and gene expression boxplots in resistant and sensitive samples of the strongest genes are
presented in Figure 2.

Figure 2. Cont.
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Figure 2. Radar chart of the most significant genes correlated with 5FU therapy response in the
in vitro database (A) and the human samples (B). Boxplots of the most significant genes in both
databases (C–F). The values presented in the radar chart are ROC AUC values for the specific genes.
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2.4. Functional Annotation of Validated Genes

Significant genes were further examined by gene ontology biological process and
molecular function overrepresentation analysis. The most significant terms were response
to oxidative stress (35 genes, adjusted p-value: 3.90 × 10−2) for biological process and
GTPase activity (28 genes, adjusted p-value: 9.79 × 10−3) for molecular function. The
strongest significant GO categories are presented in Table 4.

Table 4. Result of the functional gene annotations of the new biomarker candidates identified in
in vitro and validated human samples. The table shows only the top five genes in terms. The first
value is the ROC AUC in vitro, and the second value is the ROC AUC in human samples.

Class Gene Ontology
ID

Gene Ontology
Term Gene Ratio Adjusted

p-Value
Top Five Genes included in

the Term

Biological
process

GO:0006979 response to
oxidative stress 35/679 3.90 × 10−2

NFE2L2 (0.619; 0.714);
HNRNPD (0.645; 0.698);

MGST1 (0.610; 0.696) EGLN1
(0.631; 0.695); STX4

(0.636; 0.689)

GO:0000302
response to

reactive oxygen
species

22/679 4.01 × 10−2

NFE2L2 (0.619; 0.714);
HNRNPD (0.645; 0.698);

EGLN1 (0.631; 0.695); EEF2
(0.668; 0.689); PPP2CB

(0.659; 0.689)

GO:1903311
regulation of

mRNA metabolic
process

28/679 4.01 × 10−2

SF1 (0.670; 0.731); GIGYF2
(0.624; 0.702); HNRNPD (0.645;
0.698); HNRNPC (0.621; 0.688);

THRAP3 (0.636; 0.684)

GO:0048762 mesenchymal cell
differentiation 22/679 4.01 × 10−2

PDCD6 (0.624; 0.718); TAPT1
(0.610; 0.708); CLASP2 (0.651;

0.697); RTN4 (0.675; 0.690);
SDCBP (0.644; 0.680)

Molecular
function

GO:0003924 GTPase activity 28/693 9.79 × 10−3

RND3 (0.701; 0.726); ARF4
(0.652; 0.703); KRAS (0.614;
0.694); EEF2 (0.668; 0.689);

TUBB2A (0.673; 0.681)

GO:0005525 GTP binding 31/693 9.89 × 10−3

RND3 (0.701; 0.726); ARL11
(0.630; 0.703); ARF4 (0.652;
0.703); KRAS (0.614; 0.694);

EEF2 (0.668; 0.689)

GO:0032550
purine

ribonucleoside
binding

31/693 9.89 × 10−3

GO:0001883 purine nucleoside
binding 31/693 9.89 × 10−3

GO:0032549 ribonucleoside
binding 31/693 1.10 × 10−2

2.5. Machine Learning Approach to Set Up an Integrated Predictive Tool

In the machine learning analysis, we used the entire combined database by employing
the in vitro samples as the training set (total n = 592, nonresponder n = 294, responder
n = 298), and the 5FU/capecitabine treated human samples as the test set (total n = 157,
nonresponder n = 80, responder n = 77). A total of 12 genes remained in the final model
and the genes that had the highest influence on the performance of the model were among
the top ten genes identified in the in vitro databases, such as SHISA4, SLC38A6, PRPF38B,
and LAPTM4A. Other genes with a significant effect on performance and overexpressed
in the resistant phenotype include LPP and FOXF2, whereas genes overexpressed in the
sensitive group were RPL3, MAP2K7, PCF11, INTS7, and TAGAP (Figure 3).
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Figure 3. Performance of the random forest-based integrated predictor in the test set comprising
of the human samples. The ROC curve of the random forest model tested in the human samples
(A) and feature importance of the included genes determined by the random forest model (B). The
red diagonal line depicts a random classifier model, whereas blue line displays our classifier model.

The accuracy of the random forest classifier in the test set was 0.745 (95% CI: 0.67–0.81),
sensitivity was 0.83 (95% CI: 72–90%), and specificity was 0.66 (95% CI: 55–77%). The model
correctly identified 66 out of 80 nonresponders and 56 out of 77 responders in the test set.
The ROC AUC in the test was 0.74 (95% CI: 0.660–0.819, p-value: 2.17 × 10−7).

3. Discussion

In our study, we had two major goals. On the one hand, since the backbone of
systemic chemotherapy treatment in colorectal cancer is based on fluoropyrimidines, we
first attempted to identify a set of genes that have a potential role in the chemoresistance
against these agents. On the other hand, we developed a machine learning-based predictor
for the identification of sensitive and resistant colorectal tumors using gene expression data.

Some information is already available for the best-performing genes involved in
chemoresistance identified in the in vitro database. SHISA4 is a member of the Wnt
pathway that has been previously linked to 5FU resistance in colorectal cancer [19,20]. The
gene SLC38A6 is involved in glutamine transport and the silencing of the gene resulted
in the inhibition of cell cycle progression and cell viability in a hepatocellular cancer cell
line [21]. The overexpression of LAPTM4A negatively regulates the function of human
organic cation transporter 2 [22] and overexpression of the transporter is associated with
improved survival in colorectal patients [23]. Remarkably, we have found that all the
most important genes determined by the random forest model were also significant in our
integrated database.

A strength of our study is the independence of the in vitro training set and the test set
of patient samples. We have to emphasize that here we directly linked cell line data which
were based on 5FU monotherapy to clinical samples with fluoropyrimidine monotherapy.
To our knowledge, this is the first such study with clinically meaningful sample numbers
and with a sole focus on fluoropyrimidine monotherapy.

The robustness of our results is also supported by the fact that multiple significant
genes of the most important gene ontology categories also contain several markers that
have been previously linked to chemoresistance. For example, silencing the NFE2L2
gene increased 5FU sensitization in hepatocellular carcinoma cells [24], RTN4 knockdown
promoted higher cytotoxic events in paclitaxel-treated cancer cells [25], and RND3 overex-
pression promoted drug resistance in gastric cell lines [26].

We have to note a limitation of our study. Although the sensitivity of the random
forest model for identifying non-responder patients was 0.83, the achieved specificity was
only 0.66. In other words, while the model had a high power for predicting resistance, this
did not mean that the alternative estimate automatically confersi therapeutic sensitivity. A
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future study with an improved prediction model based on higher sample numbers could
strengthen the classification sensitivity as well. Secondly, we have to note that we used
tertiles of the AUDRC values for classification so that there were no cell lines with similar
resistance values. In the nonresponder cell lines, the dose–response curves were markedly
shifted to the right. While there could be a difference in response among these cells, the
clinical utility of such high concentrations is negligible.

In summary, we identified a set of genes related to resistance against fluoropyrim-
idines by using gene expression profiles from cell lines and 5FU- and capecitabine-treated
patients. Our results will help to rank 5FU biomarker candidates in future studies. We also
constructed a machine learning model capable of linking the in vitro and in vivo models,
which was able to correctly identify a high proportion of non-responder patients. By utiliz-
ing gene expression data from the primary tumor, the random forest model could be used
to help therapeutic decision-making.

4. Materials and Methods
4.1. In Vitro Biomarker Discovery

To investigate the genes which may potentially influence the efficacy of 5FU therapy
in vitro, we used the Genomics of Drug Sensitivity in Cancer portal (GDSC) version 1 drug
screening database as a discovery dataset [27]. The preprocessing and normalization steps
for generating the gene expression data tables were executed as described previously [28].

In the in vitro dataset, we used the reported area under the dose–response curve
(AUDRC) values to determine the therapeutic response in 5FU-treated cell lines. We
defined a cell line as a responder to the treatment if the reported AUDRC value was in the
lower tertile considering all 5FU-treated cell lines. Cell lines with an AUDRC value in the
upper tertile were categorized as nonresponders. Cell lines with AUDRC values in the
middle tertile were excluded from the analysis (Figure 1A). The IC50 values for the cell
lines are provided in Supplemental Figure S1.

Gene expression across all genes among nonresponders and responders was compared
using Mann–Whitney and receiver operating characteristic (ROC) tests in the R statistical
environment (https://www.r-project.org/, accessed on 30 October 2022) using Bioconduc-
tor libraries (www.bioconductor.org, accessed on 30 October 2022). The significance cutoff
for p-values was set at p < 0.01. The false discovery rate (FDR) was calculated using the
web application www.multipletesting.com (accessed on 30 October 2022) [29], and only
results with an FDR of less than 1% were accepted as significant.

The ‘clusterProfiler version 4.0.5’ R package [30] was used to perform the functional
gene annotations of the new biomarker candidates.

4.2. Validation in a Dataset Comprising Clinical Samples

We searched the GEO (https://www.ncbi.nlm.nih.gov/geo/, accessed on 30 October
2022) and GDC (https://portal.gdc.cancer.gov/, accessed on 30 October 2022) portals to
identify datasets suitable for the analysis. During this search, the keywords “colorectal”,
“cancer”, “treatment”, “response”, and “survival” were used. We considered only those
publications which included raw gene expression data, information on clinical treatment,
response to the treatment or survival information, and involved at least ten patients.

The integrated database comprised two Affymetrix platforms (GPL96: Affymetrix
Human Genome U133A, GPL570: Affymetrix Human Genome U133 Plus 2.0), one Agi-
lent platform (GPL6480: Whole Human Genome Microarray 4 × 44K), and the Illumina
HiSeq platform.

The raw gene expression data were processed according to standard practices. For the
samples measured by Affymetrix gene arrays, normalization was performed with the affy
package [31], for the samples with Agilent-based chip, pre-processing was performed with
the limma package [32], and samples measured by Illumina HiSeq data were processed
using DESeq2 [33]. The integrated complete gene expression dataset consisting of samples

https://www.r-project.org/
www.bioconductor.org
www.multipletesting.com
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
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from all three platforms was quantile normalized. Finally, a scaling normalization was
applied to set the mean expression across all genes in each sample to 1000.

Since most samples were measured with the Affymetrix GPL570 platform, we used
this platform as the basis for gene mapping between different platforms. Samples measured
by other platforms were mapped to the GPL570 platform via the official gene symbols.
We used JetSet [34] to select the most reliable probe set for genes measured by multiple
probes. In cases where multiple probes matched a single gene, we selected the probe with
the highest interquartile range [35].

Clinical samples were divided into responder and nonresponder groups according
to the authors’ categorization using the clinical annotation of the source dataset. If the
outcome of therapeutic response presented four classes, they were combined into two
categories: tumors with “progression” and “stable disease” were categorized as nonrespon-
ders, whereas samples with “partial response” or “complete response” were categorized as
responders. In the clinical cohort, all genes significant in the training set were analyzed for
correlation with resistance.

4.3. Machine Learning Approach to Set Up an Integrated Predictive Tool

We aimed to combine all available genes into a single predictive algorithm. For
this, we had to combine the gene expressions of cell lines and human samples into a
single database. As the gene expression dynamic ranges yielded a marked difference, we
performed an additional normalization using the combat command of the SVA (version:
3.40.0) R package [36]. As for the analysis of the single genes, in the model-building
process, the in vitro samples were assigned to the training set and the clinical samples
to the test set. For the analysis, we retained only genes upregulated in nonresponder
samples if the p-value in the Mann–Whitney test was below 0.01 and the FDR was below
1%. Next, we applied the boruta R package as a second feature selection method to detect
the most important significant genes, which were then combined into a single predictor
using a random forest algorithm. The randomForest (version: 4.6.14) [37] and caret (version:
6.0.90) [38] R packages were used in the analysis. To evaluate the overall performance of
the final model, we performed a receiver operating characteristic analysis and determined
the area under the curve (AUC).
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